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Lipkin constructed a many-Fermion system which, despite the simplicity of its 
Hami!tonian, exhibits features of complex systems. Application of the maxt ~- 
mum algorithm is attempted in order to find the ground-state level. Numerical 
computations suggest that eigenstates of a particular parity transformation 
introduced by Lipkin have many advantages. Coupling of two models provides 
a means of studying the maximum method in the product space generated by 
the two subsystems. 

1. INTRODUCTION  

Approximation methods in quantum mechanics usually suffer from 
lack of accuracy. As far as computations of the ground-state level are 
concerned, criteria of convergence are not ready at hand. This problem 
arises especially when the effect of truncations is not sufficiently under- 
stood. 

This difficulty motivated H. Lipkin to construct a many-body system 
which is accessible to exact diagonalization, although its dynamical proper- 
ties are in no respect trivial. For  example, collective excitations can occur. 
While L ipk in  tested the accuracy of perturbation and Har t r ee -Fock  
calculations, a further algorithm is provided by the maximum method. 

The first section briefly reviews the notions introduced by  Lipkin. The 
second gives a short account of the maximum principle. The third section 
deals with applications of  this calculus to the ground-state band of the 
Lipkin model. The final section gives an example concerning the product  
space of two Lipkin systems. 
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Given N identical 
generalized: 

2. THE LIPKIN MODEL 

We ascribe to a Fermion two possible states 

1+) and 1 - )  

which are assumed by hypothesis to span the complete state space. We 
then define three operators j~, j+ ,  and j_  as follows: 

j~[+)=�89 >, j+[+)--0 

LI-> = -~1->,  Y+l->=l+> (2.1) 

j =j*+ 

Fermions, these one-body operators can easily be 

N N 

~,  = Z Y~, .~+ = • j + ,  (2.2) 
p = l  p = l  

,~_ =zt+ 

The three operators ~z, ~+, and ~_ obey the canonical angular-momen- 
tum commutation relations (Lipkin et al, 1965) 

[,%,% ] =,%, [,%,,~_ ] = -,~_ (2.3) 

On account of identities (2.3) the three observables 

1 ~ 1 ~ (2.4) .% = ~(.~+ +.~-), ~ = ~(~+ -~-), .% 

are called quasispin operators. They form the components of angular 
momentum in an abstract three-dimensional quasispin space. 

The ideas presented so far have much in common with isospin 
(Lipkin, 1966). 

The interaction Hamiltonian between the particles of the Lipkin 
model is defined (Lipkin et al., 1965) as 

V ( ~ 2  + ~2 H--~3,+ b3+ ~3-) 

= .% + 2 v(~ - ~y)  (2.5) 
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V denotes a perturbation parameter. In case V-- 0 the eigenstates of H are 
just the N-particle determinants, and their energy is one-half the number 
of particles in the plus state minus those in the minus state. 

But even in the general case, i.e., V different from zero, the square of 
quasispin 

~2 ---- ,~2x -1- e~2X~y -t-' ~2z (2.6) 

is a conserved quantity. For even particle number N, J must always be 
integral while J is half-integral for odd N (Lipkin et al., 1965). 

An N-particle Lipkin model contains 2 u base states (Lipkin et al., 
1965). The highest quasispin that can occur is J = N / 2 .  This means that J 
bands are usually degenerate (Lipkin et al., 1965). However, there is but 
one band belonging to J = N / 2  which we call the ground-state band 
according to Lipkin et al. (1965). 

An immediate consequence of definition (2.5) in the case of integral J 
is the splitting of the total J-band into an H-invariant subspace containing 
only even eigenvalues M of Jz and the complementary space of odd M 
(Lipkin et al., 1965). 

A closer look at the symmetry properties of H reveals that the energies 
of the Lipkin model are symmetric with respect to zero. They occur 
pairwise, E and - E  (Lipkin et al., 1965). In order to understand this 
feature let us introduce the following rotation in quasispin space: 

L = e x p [  2-~(~x+i~r-c~ ~y)] (2.7) 

L performs a 180 ~ rotation about the 45 ~ axis in the x ,y  plane. Its effect is 
summarized by the following equations: 

L.,~x L - 1  = ~y 

L ~ y  L - 1 = ~ x  (2.8) 

L ~ z  L - I =  -',~ z 

This proves our assertion since 

L H L  -1 = _ H (2.9) 

and to each state of energy E there corresponds a state of energy - E  
(Lipkin et al., 1965). The dimensionality of an integral J band being odd, 
we conclude that E = 0 is an eigenvalue of H. 
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3. THE MAXIMUM PRINCIPLE 

This section describes the eigenvalue computation scheme which we 
will apply to the ground-state band of the Lipkin model in order to obtain 
its ground-state energy. 

Let Ix> be a normalized state vector and 

(H>x--(xlHx > (3.1) 

its expectation value. 
Its square variance is defined as 

~bH(Ix >)-- <H 2>; - ((H >~) 2 (3.2) 

We further assume Ix> has nonvanishing components of the maximum 
and minimum eigenvalues Em~ x and E~i n of H. Surely, then, ~bn is positive 
and we can define the sequence 

Hlx~) - <n)xklxk) 
[Xk +1 ) = (3.3) 

[~,,(Ix~>)] I/2 

recursively starting from Ix0) = Ix). 
Evidently [Xk+l) is the unit vector perpendicular to ]xk) in the 

two-space spanned by Ixk) and Hlx,,). The expression (3.3) cannot 
become singular because of the maximum principle (Textor, 1978) which 
states that fin is a monotonically ascending function: 

~,(Ix0>) <~,,(Ixl>) < . . .  

~< r x~ >) -<< r ~ >) < . . -  

< lim 6n([xk>) (3.4) 
k-~oo 

Calling the space generated by tx~> and Ix,+l> F~ the maximum 
principle has the more precise form 

,Pn(Ixk >) = ,Pn(Ixk+ 1>) 

if and only if F~ is invariant under H. The sequence of subspaces F~ 
converges to a H-invariant space F for k---~oo. The eigenvalues of H on F 
are E , ~  and Emi ~ (Textor, 1978). 
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4. CALCULATION OF THE GROUND-STATE ENERGY 

We are now going to apply the maximum algorithm to the ground- 
state band of the Lipkin model. Before selecting a particular Ix0) let us fix 
the notation. By means of the orthogonal projection 

e ,  = txk >(xkl + 

the Hamiltonian H can be projected onto Fk: 

hk: = PkHPk 

Its eigenvalues are 

+ . x2"] 1 / 2  es189188 ] (4.1) 

We can then prove the limit condition (Textor, 1978) 

lim ek + = E , ~ , ,  l i m  eft = E~ i  . (4 .2)  
k---~ e~ k--+oo 

In the case of the Lipkin model we remember that E ~  x and Emi ~ are 
symmetric with respect to zero. The question arises whether the same 
symmetry can be achieved for the projected eigenvalues e~,eff.  If the 
quasispin J of the ground-state band is integral we assert that Ix0) should 
be an eigenstate of the operator L, equation (2.7). 

If J is integral the spin representation of the rotation group in 
quasispin space is single-valued, i.e., L 2= 1. This is the characteristic of a 
parity operator since L is also unitary. We therefore call L the Lipkin 
parity operator. The ground-state band can be subdivided into orthocom- 
plementary spaces of even or odd Lipkin parity. 

If Ix0) has got a definite parity its energy expectation value vanishes. 
We note that 

( t x o l n l t x o )  = ( H )x o 

which using (2.9) leads to the result 

Hence 

(LxolHlLxo)  = (xoILHL- ' lXo)  = _ ( H ) x  ~ 

( H ) . o = 0  (4.3) 
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Through consecutive application of (3.3), equation (4.3) leads to the 
subsequent straightforward result. 

If [xo) is selected to be a parity eigenstate, all ]Xk) have well-defined 
parity, and they also obey equation (4.3) 

(H)xk =0, Vk (4.4) 

The assertion is obtained by use of (4.1) 

e~-= -+ n(lxk) ) 1/2 (4.5) 

Not only are the iterated eigenvalues symmetric with respect to zero, they 
also form a monotonic sequence. This follows from direct inspection of 
(3.4). However, monotony is not necessarily maintained for arbitrary [Xo). 

Parity eigenstates are actually easy to construct. In the ground-state 
band there is M = 0 ,  as can be derived from (2.8). For M ~ 0  there are the 
two linear combinations 

Ig'~): =2-'/2(1M> • ira[- M)) (4.6) 

Hint: (2.8) can be rewritten in the form 

L~+L-l=i,~_, L~ L -1=-i~§ (4.7) 

Remembering that the even M band is by itself H invariant as well as the 
odd one the two cases are considered separately. 

The model calculations were carried out with the example of a 
100-particle model, i.e., J = 50 for the ground-state band. The perturbation 
parameter of (2.5) was set to V= 10.5. Figure 1 illustrates the iteration 
scheme for the two trial vectors 

(a) M = 0  

(b) Ixo) =2-1/2(IJ)+l-J)) 

The eigenvalue plot in case (a) is almost horizontal. This contrasts sharply 
with case (b), in which the curves show an appreciabie slope. An interpre- 
tation ready at hand is the occurrence of a strong perturbation. For small 
V the spectrum of H would resemble that of ~ , ,  and trial vector (b) would 
be favored much more than (a). In the numerical example of Figure 1, 
however, a small variance in ~ ,  coincides with large variance in H. 
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eigenva[ue(, 10a I 
~s~ ta) 

~0 

30 

ZC 

lC 

3 -'~ 
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-40 

-N , a ~ 
-5~ 

~ ~ 2~ ~ ~o ~5 4'o 4~ ~o ~ ~o ~s 7'o 
iterations 

Fig, 1. C o m p a r i s o n  of two t r ia l  s tates  for the even M band .  

--~0x 

Thus having understood the situation for even M, let us now turn our 
attention to the odd band. The ansatz 

IXoc> = 2-1/2(11> + i [ -  1)) (4.8) 

will be used. From (4.6) we know it has good parity, and ~z variance was 
chosen minimal in analogy to Fig. 1. [The index c of (4.8) means complex]. 
The states [x0c > and M =  0 behave much the same (see Figure 2). 

There remains one striking puzzle. Although H is a real matrix we 
were led to complex computations. Nevertheless it seems inevitable, as can 
be recognized by restriction to real phases. Take for comparison 

]X0r> =2--1/2([ 1 > + l - -  1>) (4.9) 

The trial state (4.9) is, of course, permitted in applying the maximum 
algorithm. The plot of Figure 2 demonstrates that it suffers from many 
disadvantages. While the e~ + curves coincide for the real and complex 
situations we notice a fundamental difference in the e Z sequences. The 
symmetry (4.5) is broken, and the e Z plot converges so slowly that the 
actual convergence to the correct limit Emi n is not evident f rom the scaling 
chosen for Figure 2. The ek- are not even monotonic although fluctuations 
occur only in higher decimals and can roughly be neglected. 
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~ eigenvaLue( ~ 10 .3 ) 

50 ~ E 

40 

2O 

D 

H0 

2O 

-30 

-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- 55  Em~n 

"-~; I'o 1'5 2'o 2'5 3'o ~ io 4'5 5'0 5'5 6'o 6~ ~o 
iterations 

Fig. 2. The odd M band. The drawn-out line denotes the complex trial vector, the dashed line 
denotes the real one. 

5. C O U P L I N G  OF T W O  S Y S T E M S  

The Lipkin model  can be regarded from a somewhat  different point of  
view. Instead of selecting a single J band the full system can be decom- 
posed into two subsystems. For instance a model  of  100 particles consists 
of two halves with 50 particles each. The respective ground-state band has 
got J = 2 5 .  The product space J |  ( J = 2 5 )  is the state space of the 
coupled system. 

Let us now set up the interaction in this picture. Starting from the 
one-particle operators 

50 100 

~zI= E Jzp, X~zII=  E Jzp 
p = l  p=51 

50 100 

~+i  = ~ J+p, ~ . ~ + I I =  ~ J+p (5.1) 
p = l  p=51 

~ _ i = ~ , + , ,  ~ _ ~ . ,  ~ - -  ii - -  ,~o + i i  

H contains the three contributions 

H = H l + H u + Him (5.2) 
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with the abbreviations 

HI=x~zl + V t'~-2 +~2_i ) t~3+i 

c~ ~ 2  
HI1 = x.~ zII + V(x~ + II + ~2__ II) (5.3) 

Hin t -- 2 V(~+ i~ +ii + ~,~_ i~,~_ ii ) 

In the language of perturbation theory H I and HII represent two noninter- 
acting systems whose eigenstates are supposed to be known while Hin t is 
the perturbation Hamiltonian. We are not pursuing perturbation calcula- 
tions here but we are rather interested in applying the maximum method. 
We therefore need not know any details about the spectrum of the 
subsystems as the maximum algorithm allows us to choose a starting 
vector MI| which denotes an eigenstate of ~zi@X~zll. 

In principle we have to face a 51 x 51 problem, which can be sim- 
plified by symmetry considerations. Restricting our attention to the even 
M-band of the 100-particle system it is clear that either both M I and MIX 
are even or both must be odd. It can be shown furthermore that the 
symmetric space generated by the symmetrized states 

]M,M,,> + [MIIMI> 

and its antisymmetric complement 

IMIMu) -IMnM,) 

are H invariant. 

Proof. The product states are decomposed into eigenstates of total 
quasispin j :  

I M, MI, > = E C(J, J, M,, Mi,d, M) I jM ) (5.4) 
J 

M = M I + M n 

Remember the exchange identity 

C(J,J, MI, MII,j,M)= ( - 1)2d-Jc(J,J, MII, MI,j,M) (5.5) 

it is immediate that the symmetric space Usy m contains the even j ' s  

U,y~= (9 Uj (5.6) 
j cv~n 
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while the antisymmetric space comprises the odd j bands of the product 
space. This implies H invariance of Usy m. If our trial state is an element of 
Usy m then it is possible to compute the ground-state energy. The ground- 
state band of the total 100-particle system has got evenj.  

We select the start vector 

M I = MII = 0 

(a) both M I and MIt are even; 
(b) it is an element of Usym; 
(c) its ~ ,  variance is minimal; 
(d) it has got a well-defined parity. 
The sequences e~ are plotted in Figure 3. They proceed in analogy to 

Figure 1. 
Since total quasispin , .~=~i + ~ n  is conserved one may wonder that 

the convergence properties of our start vector are so good although it does 
not have a good total quasispin j. Spin projection before applying the 
maximum method does not seem necessary. 

In order to estimate the influence of the variousj contributions on the 
above trial vector let us look at the plot of the averaging function 

+g) --~ Z ( i x D ) = ( ( . ~ > ~  ~ , , / 2  , 

in Figure 3. 
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Fig. 3. Iteration scheme for the Hamiltonian (5.2); iterations versus energy (left axis) and 
quasispin (right axis). 
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Clearly if [xk) were an eigenstate of total quasispin the function I 
would assume the respectivej  value. In general I is some average of thej ' s  
that occur, and I converges t o j  = 2 J  = 50, the quasispin of the ground-state 
band in the total system. An interesting fact is revealed by Figure 3; the 
correct j symmetry is achieved much faster by the maximum algorithm 
than the exact location of the ground-state energy. This is a strong 
argument in favor of the method since it means that the calculus estab- 
lishes the correct symmetry all by itself. 
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